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Abstract

Background: HIV infection is associated with increased susceptibility to common pathogens 

which may trigger chronic antigenic stimulation and hyperactivation of B-cells, events known to 

precede the development of AIDS-associated non-Hodgkin lymphoma (AIDS-NHL).

Methods: To explore whether cumulative exposure to infectious agents contributes to AIDS-

NHL risk, we tested sera from 199 AIDS-NHL patients (pre-NHL, average lead-time 3.9 years) 

and 199 matched HIV-infected controls from the Multicenter AIDS Cohort Study (MACS), for 

anti-IgG responses to 18 pathogens using multiplex serology. Odds ratios and 95% confidence 

intervals were estimated using conditional logistic regression models.
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Results: We found no association between cumulative exposure to infectious agents and AIDS-

NHL risk (OR 1.01, 95% CI 0.91–1.12). However, seropositivity for trichodysplasia spinulosa 

polyomavirus (TSPyV), defined as presence of antibodies to TSPyV capsid protein VP1, was 

significantly associated with a 1.6-fold increase in AIDS-NHL risk (OR 1.62, 95% CI 1.02–2.57). 

High Epstein-Barr virus (EBV) anti-VCA p18 antibody levels closer to the time of AIDS-NHL 

diagnosis (<4 years) were associated with a 2.6-fold increase in AIDS-NHL risk (OR 2.59, 95% 

CI 1.17–5.74). Additionally, high EBV anti-EBNA-1 and anti-ZEBRA antibody levels were 

associated with 2.1-fold (OR 0.47, 95% CI 0.26–0.85) and 1.6-fold (OR 0.57, 95% CI 0.35–0.93) 

decreased risk for AIDS-NHL, respectively.

Conclusions: Our results do not support the hypothesis that cumulative exposure to infectious 

agents contributes to AIDS-NHL development. However, the observed associations with respect to 

TSPyV seropositivity and EBV antigen antibody levels offer additional insights into the 

pathogenesis of AIDS-NHL.
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INTRODUCTION

Non-Hodgkin Lymphoma (NHL) is one of the most common AIDS-associated 

malignancies, and a common cause of death among HIV-infected individuals 1–3. In fact, 

NHL incidence is 60- to 200-fold greater among HIV-infected people compared to the 

general population 2,4–6. The introduction of highly active antiretroviral therapy (HAART) 

resulted in, among other benefits, up to 70% decrease of AIDS-NHL incidence compared to 

the pre-HAART era 7,8. Nevertheless, NHL risk remains significantly higher in HIV-infected 

compared to immunocompetent individuals 8–10, and AIDS-NHL is still responsible for 23–

30% of AIDS-related deaths in countries with widespread access to HAART 2,7,11–14. 

Therefore, the identification and better understanding of risk factors contributing to AIDS-

NHL immunopathogenesis remain of great importance.

AIDS-NHLs are a heterogeneous group of tumors that arise from B-cells in >90% of cases 
15–17. The pathogenic events leading to AIDS-NHL are complex and could involve chronic 

immune stimulation by multiple opportunistic infections 15,16,18–22. Indeed, while 

progressive HIV infection itself is a known contributor to chronic B-cell hyperactivation and 

inflammation 16,23–25, it also provides a setting of increased susceptibility to potential 

deleterious effects of common pathogens that are mostly harmless in immunocompetent 

individuals 26. For example, bacteremias are up to 20 times more prevalent among HIV-

infected individuals compared to the general population 27, and opportunistic infections are 

frequently common cause of death in HIV-infected individuals 28,29.

The most common pathogens linked to AIDS-NHL development are two gamma-

herpesviruses; Epstein-Barr Virus (EBV) and Kaposi Sarcoma-associated Herpesvirus 

(KSHV). Almost all primary central nervous system lymphomas (PCNSLs) are EBV-related, 

primary effusion lymphomas (PEL) are KSHV-related, and both EBV and KSHV are 

essential to the development of a subset of immunoblastic diffuse large B-cell lymphomas 
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(DLBCL) 15,30–34. In addition, recent large cohort study reported that chronic co-infection 

with hepatitis B (HBV) and hepatitis C (HCV) viruses also contributes to the AIDS-NHL 

risk 35.

The association between infectious agents and NHL is not restricted to the setting of HIV, as 

some chronic infections have also been linked to the development of NHL in 

immunocompetent people. Chronic HBV infection increases risk for multiple NHL subtypes 
36–38; HCV infection can lead to development of marginal zone B-cell lymphoma (MZL) 

and DLBCL 39–41; and chronic infection with Helicobacter pylori has been linked to the 

development of mucosa-associated lymphoid tissue (MALT) lymphoma 42–46.

While there is ample evidence that individual pathogens confer increased susceptibility to 

NHL with or without HIV infection, we sought to examine the effects of cumulative 

exposure to infectious agents in relation to AIDS-NHL risk. We hypothesized that such 

exposure could contribute to the chronic antigenic stimulation and hyperactivation of B-cells 

preceding AIDS-NHL development. To test this hypothesis, we measured the presence of 

antibodies to 38 different antigens of 18 distinct pathogens (14 viruses, 3 bacteria, and a 

protozoon). The selection of these pathogens was based on: a) previously reported 

associations with NHL 32,33,35,46–49, and/or b) higher frequency of pathogen or pathogen-

associated disease in HIV-infected compared to immunocompetent individuals 50–60, 

respectively.

MATERIALS AND METHODS

Study population.

The Multicenter AIDS Cohort Study (MACS) is an ongoing prospective cohort study 

established in 1984 to study the natural and treated history of HIV and AIDS in men who 

have sex with men (MSM) recruited from four U.S. metropolitan areas (Baltimore/

Washington, DC; Chicago; Los Angeles; and Pittsburgh) 61,62. Study visits are held 

biannually and include face to face interviews, physical examination, specimen collection 

and laboratory testing. HIV seropositivity and CD4+ T cell counts are measured at nearly all 

study visits, and sera are collected and stored in central repositories 63. All protocols and 

questionnaires utilized in the MACS have been approved by the Institutional Review Board 

of each center.

Study Design.

For this present study, we designed a nested case-control study within the MACS. Cases 

included all participants with a diagnosis of pathologically confirmed AIDS-NHL following 

enrollment into the MACS and the availability of archival pre-NHL diagnostic serum. Based 

on these criteria, 200 AIDS-NHL cases were identified. For each case, one HIV-infected 

participant who did not develop AIDS-NHL up to November 2014 was selected. For cases, 

serum specimens were selected closest to 4 years prior to AIDS-NHL or any date preceding 

4 years. For about half of the cases who did not have archival specimens at least 4 years 

prior to diagnosis, any pre-diagnosis specimens was utilized. For controls, specimen time-

points were matched to each case by visit number. Additionally, controls were matched to 
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cases on: i) recruitment phase into the cohort (1984–1985, 1987–1991, or 2001+), ii) prior 

highly active antiretroviral drug use (HAART, ever versus never), and iii) CD4+ T cell 

counts at the time of AIDS-NHL diagnosis or matched time-point for controls (± 200/µl). In 

addition, cases who became HIV-infected after recruitment into the cohort were matched to 

controls by their seroconversion date, and cases treated with HAART were matched to 

controls on time since their first therapy. The definition of HAART was guided by the 

DHHS/Kaiser Panel 64 guidelines and defined as three or more antiretroviral (ART) drugs 

consisting of one or more protease inhibitors (PIs), or one non-nucleoside reverse 

transcriptase inhibitor (NNRTI), or the nucleoside or nucleotide reverse transcriptase 

inhibitors (NRTIs), or an integrase inhibitor (II), or an entry inhibitor (including fusion 

inhibitors; EI). One case/control set was excluded from analysis due to insufficient specimen 

volume leaving a total of 199 cases and 199 controls for the final analysis.

Serological Methods.

Frozen serum samples were shipped on dry ice to the German Cancer Research Center 

(Heidelberg, Germany) for serological testing for IgG antibodies to 38 previously well-

defined and specific antigens of 18 pathogens (Supplementary Table S1). Analysis included: 

i) human herpesviruses: Herpes Simplex Virus 1 and 2 (HSV-1, −2), Epstein Barr Virus 

(EBV/HHV4), Human Cytomegalovirus (HCMV/HHV5), Human Herpesviruses 6 and 7 

(HHV-6, −7), Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8); ii) human hepatitis 

viruses: Hepatitis B Virus and Hepatitis C Virus (HBV and HCV); iii) human 

polyomaviruses (HPyV): BKPyV, JCPyV, Merkel cell polyomavirus (MCPyV), and 

Trichodysplasia spinulosa-associated polyomavirus (TSPyV); iv) Human Papillomavirus 

type 16 (HPV16); v) bacteria: Helicobacter pylori, Chlamydia trachomatis, and Mycoplasma 

genitalium; and iv) parasite Toxoplasma gondii. Antigen preparation and serological 

techniques have been previously described 65–69. Briefly, serum samples (1:1000 dilutions) 

were incubated with antigen-loaded fluorescently labeled beads and analyzed on a Luminex 

200 analyzer. As output, bead-bound fluorescence-stained human antibodies to each of the 

antigens of interest were quantified as median fluorescence intensity values (MFI) in a single 

reaction for each sample 69,70. Following quantification, standard cut-offs for seropositivity 

were applied for each antigen by visual inspection of frequency distribution curves 

(percentile plots), as previously described 71–74. Quality controls used on every tested plate 

included previously tested serum samples with known reactivity profiles. Coefficients of 

variation (CVs) for infection antibodies ranged from 6–29%, with a median of 18%. Eighty 

percent of markers tested had a CV less than 20%.

Statistical analyses.

Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional 

logistic regression models. The case-control matching by design was incorporated into the 

models by adding a grouping variable for matched set. In addition to the matching factors, 

all models were adjusted for covariates selected a priori for their previously described 

associations with AIDS-NHL and included race/ethnicity (categorical: Hispanic white, non-

Hispanic white, Hispanic black, non-Hispanic black, Asian/Pacific Islander) and age 

(continuous) at the date of serum collection for serological testing in this study.
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To address our primary hypothesis, we examined the association between cumulative 

exposure to infectious agents and AIDS-NHL risk. This exposure was modeled as a 

continuous variable and defined as the number of pathogens found to be seropositive based 

on a predefined number of antigens testing positive, as well as a categorical variable 

(seropositive for 10–18 pathogens versus ≤9 pathogens). These categories were determined 

by the median number of seropositive pathogens in the control group (10 pathogens) and not 

by a prior biological rationale. Secondarily, we also examined the association between 

AIDS-NHL risk and seropositivity to each of the 18 pathogens individually (seropositive 

versus seronegative). We also examined quartiles of antibody levels to each antigen of the 

two herpesviruses that have been etiologically linked to AIDS-NHL (KSHV and EBV), 

among those participants who were seropositive for that antigen, using logistic regression 

models adjusting for the matching factors as covariates in the model. Quartiles of antibody 

levels to TSPyV VP1 antigen were also examined due to recent data suggesting influence on 

lymphoma pathogenesis 75. Quartiles for antibody levels were determined by the distribution 

within the control group, and are presented as <25th, 25th-75th, and >75th percentile for 

comparability with a prior study 76. In addition, we examined patterns of AIDS-NHL risk 

associated with EBV antibody levels according to the time interval (or lead-time) between 

serum sample collection and AIDS-NHL diagnosis (<4 years or ≥4 years). The categories 

for lead-time were selected according to the natural distribution of the data and to ensure an 

approximately equal number of participants in each category. Due to the exploratory and 

hypothesis generating nature of these secondary aims, we did not correct for multiple-

hypothesis testing.

Correlation matrix for all infections.

We have run a correlation matrix for all infections measured in our study (Supplementary 

Table S2). Bonferroni correction was applied for multiple comparisons. Significant positive 

correlation was found between seropositivity to HBV and HSV2, and HBV and KSHV, 

respectively; as well as between seropositivity to HSV2 and KSHV and HSV2 and 

Chlamydia trachomatis.

RESULTS

Study population.

Cases and controls were similar in their distributions by recruitment year, antiretroviral drug 

therapy, and CD4+ T-cell count, as expected based on the matching criteria (Table 1). The 

majority of cases and controls were enrolled into the MACS in the initial recruitment wave 

(1984–1986, 84.6% for each group), were HAART naïve (94.5% for each group) and had 

>400 CD4+ T-cells/mm3 (46.2% of cases and 41.3% of controls, respectively). The majority 

of cases and controls were non-Hispanic white (70.9% and 79.9% respectively). Cases 

tended to be slightly older than controls; 35.2% of cases were 40 years or older, compared to 

30.7% of controls.

Among the cases, the mean time from blood draw to NHL diagnosis was 3.9 years; ranging 

from 1 month to 12 years (standard deviation 1.6 years). The majority of cases were 

systemic lymphomas (69.8%), among which DLBCL was the most common subtype 
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(49.6%). For 82.4% of cases, AIDS-NHL was the first primary cancer. Kaposi sarcoma 

preceded AIDS-NHL in 32 out of the 35 cases where AIDS-NHL was a second primary 

cancer (Table 1).

Cumulative exposure to infectious agents.

Supplementary Table S1 lists the names of 18 pathogens and 38 antigens tested in this study. 

Cumulative exposure to infectious agents (defined as the number of pathogens found to be 

seropositive) was not associated with AIDS-NHL risk when examined as a continuous 

variable (OR 1.01, 95% CI 0.91–1.12) (Table 2). Seropositivity for a higher number of 

pathogens (10–18 versus ≤9), was not significantly associated with an increased AIDS-NHL 

risk (OR 1.35, 95% CI 0.78 – 2.32) (Table 2).

Individual pathogen seropositivity.

Seropositivity to trichodysplasia spinulosa polyomavirus (TSPyV) was significantly 

associated with AIDS-NHL (OR 1.62; 95% CI 1.02–2.57, Table 3). No other associations 

were observed regarding seropositivity of remaining 17 pathogens tested. Interestingly, 

when HCV and HBV were examined together, there was a suggestion of an increased risk of 

AIDS-NHL associated with seropositivity for both viruses compared to seronegativity for 

both (OR=1.51, 95% CI=0.63–3.61).

TSPyV, EBV- and KSHV-specific antigens.

Among 199 cases, 151 (76%) were defined as TSPyV seropositive compared to 134 (67%) 

of controls (p=0.037). Though seropositivity to TSPyV was significantly associated with 

AIDS-NHL risk (Table 3), we did not observe any significant associations between TSPyV 

antibody levels and AIDS-NHL risk (Table 4).

Seroprevalence of the four specific EBV antigens measured (VCA p18, EA-D, ZEBRA, and 

EBNA-1), was similar between cases and controls and ranged from 81–100% among cases 

and 86–100% among controls (data not shown). Among the EBV VCA p18 seropositives, 

high antibody levels (levels >75th percentile) were associated with a 2.6-fold increase in 

AIDS-NHL risk when measured within four years prior AIDS-NHL diagnosis (OR 2.59; 

95% CI 1.17 – 5.74, Table 4). In contrast, EBV anti-ZEBRA and EBV anti-EBNA-1 

antibody levels had significant inverse associations with AIDS-NHL risk, with 1.6 to 2.1-

fold decreased risks associated with the 25th-75th, and >75th percentile categories, 

respectively, compared with those with levels in the <25th percentile category (OR 0.47; 

95% CI 0.26 – 0.85 and OR 0.57; 95% CI 0.35 – 0.93, Table 4).

Presence of antibodies to either LANA or K8.1 antigen was required to define the subject as 

KSHV seropositive. There was a non-significant dose-response between anti-LANA 

antibody levels and increased AIDS-NHL risk; high KSHV anti-LANA antibody levels 

(>75th percentile) was associated with a non-significant 1.9-fold increased risk for AIDS-

NHL overall (OR 1.9; 95% CI 0.87 – 4.20, Table 4). Higher anti-K8.1 antibody levels also 

appeared to be modestly, but non-significantly associated with increased AIDS-NHL risk.

Halec et al. Page 6

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

To explore the impact of common infections to the development of AIDS-NHL, we utilized 

multiplex serology approach and measured antibodies to 18 different pathogens commonly 

found at higher frequencies in HIV-infected compared to the non-HIV-infected individuals. 

Using sera collected prior to AIDS-NHL diagnosis, we found that cumulative exposure to 

pathogens we measured for was not associated with AIDS-NHL risk. However, novel 

observations include findings on seropositivity to TSPyV, and high antibody levels of EBV 

anti-VCA p18 antibodies, to be significantly associated with increased AIDS-NHL risk, 

whereas high levels of EBV anti-EBNA-1 and anti-ZEBRA antibodies were significantly 

associated with decreased AIDS-NHL risk.

Association of TSPyV with AIDS-NHL lymphoma is novel. TSPyV is a polyomavirus 

discovered in skin lesions of immunosuppressed patients which causes a rare skin disease 

trichodysplasia spinulosa 77,78. In contrast to other polyomaviruses, TSPyV does not seem to 

be a part of the skin microbiome in healthy people 55, and Wieland and colleagues reported 

that TSPyV DNA was more frequently found on the skin of HIV-infected compared to non-

HIV-infected men (3.8% vs. 0.8%) 55. Indeed, when we stratified AIDS-NHL in our study 

into systemic and CNS lymphomas, we observed that the increased AIDS-NHL risk was 

restricted to systemic lymphomas (OR 2.03, 95% CI 1.17–3.53) and not to CNS lymphomas 

(OR 0.77, 95% CI 0.29–2.04). However, B-cell AIDS-NHL located in the skin are rare 79–81, 

and in our study only 3% (5/151) of TSPyV seropositive cases, and 2% (1/48) of TSPyV 

seronegative cases had skin-associated AIDS-NHL. Using the same multiplex serology 

assay for polyomaviruses, Teras and colleagues found no significant association between 

TSPyV seropositivity and NHL in immunocompetent people 82.

The observed associations between EBV antigens and AIDS-NHL risk may provide insight 

into pathogenic effects of EBV. EBV is a herpesvirus that causes lifelong infection and 

undergoes cycles of viral reactivation 83,84. We found high levels of EBV anti-VCA p18 

antibodies to be associated with increased AIDS-NHL risk, but only when measured closer 

to AIDS-NHL diagnosis date (<4 years). Detection of high EBV anti-VCA p18 IgG has 

been associated with high EBV loads in HIV carriers 85,86, and is thought to reflect an active 

EBV infection (loss of control of EBV infection) or EBV viremia 87. Indeed, the loss of 

immunoregulatory control of EBV-infected B-cells, resulting from an impaired T-cell 

function, is one of the two major mechanisms underlying genesis of AIDS-NHL 22,31,88. 

Modest positive associations of EBV VCA p18 and increased NHL risk were also found in 

immunocompetent people 76.

IgG antibodies to another EBV antigen, EBV EBNA-1, also persist throughout the lifetime 

among EBV-infected individuals. In contrast to anti-VCA p18, anti-EBNA-1 IgG antibodies 

are not present during the acute phase of EBV infection but develop in a later course of the 

infection 89. EBNA-1, the EBV nuclear antigen, contains critical epitopes which can elicit 

cytotoxic T lymphocyte (CTL) responses to EBV infection, crucial for infection control 
90,91. In contrast to EBV VCA p18 findings, we found that high levels of anti-EBNA-1 IgG 

were associated with decreased AIDS-NHL risk, with associations being stronger when anti-

EBNA-1 antibodies were detected >4 years prior diagnosis. We also observed an inverse 
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association between higher EBV anti-ZEBRA antibody levels and AIDS-NHL risk. The 

ZEBRA protein is one of the early encoded EBV proteins which activates a switch from the 

latent to the lytic viral gene expression 92,93. We hypothesize that the observed inverse 

associations represent consumption of anti-EBNA-1 and anti-ZEBRA antibodies required to 

counteract chronic EBV viral infection preceding AIDS-NHL, possibly through antibody-

dependent cell-mediated cytotoxicity 94. Indeed, decreased anti-EBNA-1 antibody levels 

were shown to be associated with low CTL responses in children with chronic EBV 

infection, and in multiple diseases 95–98.

Our data on significant inverse association between high levels of antibodies to EBV 

ZEBRA and AIDS-NHL risk stand in contrast to increased NHL risk with high EBV 

ZEBRA antibodies observed in recent Western and Asian cohorts 75,76, respectively. These 

different findings might be reflective of different biology between NHL in 

immunosuppressed versus immunocompetent populations. Indeed, the observed positive 

association with EBV ZEBRA and EA_D in prior studies was specific for chronic 

lymphocytic leukemia/small lymphocytic (CLL/SLL) and follicular lymphoma (FL) NHL 

subtypes, which represented less than 1% of cases in our study 76.

Although the associations were not significant, there was a suggestive association of high 

levels of KSHV anti-LANA and anti-K8.1 antibodies and AIDS-NHL risk. KSHV is a 

causative agent of Kaposi sarcoma (KS) 34,99,100, and KS and AIDS-NHL represent the two 

most commonly occurring cancers among HIV-infected people 7. KSHV is also the main 

cause of Primary Effusion Lymphoma (PEL) and Castleman’s disease (CD), two rare AIDS-

NHL subtypes 34,101. The active role of KSHV has also been proposed in the immunoblastic 

variant of DLBCL 30,102–104. We were unfortunately unable to define the DLBCL in our 

cohort further as immunoblastic, centroblastic or anaplastic 105 and therefore we could not 

confirm if it were the immunoblastic DLBCL variant that were KSHV seropositive. LANA, 

a latency-associated nuclear antigen, is one of the few KSHV encoded proteins that are 

highly expressed in latently infected tumor cells and acts as a regulator of viral transcription 
106,107. Its direct role in oncogenesis can be linked to binding and inactivation of the two 

major tumor suppressor proteins; p53 and pRb, respectively 108,109. K8.1 glycoprotein is a 

structural component of KSHV expressed only during viral replication; therefore, it does 

seem plausible that the presence of KSHV K8.1 antibodies, or high levels of these, could 

indicate individuals who are at a greater risk for development of KSHV-associated 

malignancies 15,33,49,102.

NHL are a heterogeneous group of cancers both in general population, although less so in 

the setting of HIV. The two most common AIDS-NHL subtypes are DLBCL and BL. Also 

in our cohort DLBCL represented 69/139 (50%) and BL 23/139 (16%) of the systemic 

AIDS-NHL cases. Exploratory analysis in our cohort found that when these case groups 

were compared to one another, that there were not significant differences in antigen 

exposure. In addition, a fraction of AIDS-NHL in our study were second primary tumors 

(35/199, 18%). A subgroup analysis restricted to the 164 AIDS-NHL as a first primary 

cancer only, showed no significant differences in pathogen seropositivity or antibody levels 

to specific antigens compared to all AIDS-NHL.
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In HIV infection, chronic antigenic stimulation (as in cases with multiple infections), and 

lack of CD4+ T-cell help, can lead to T-cell exhaustion, i.e. disruption of memory T-cell 

function and defects in memory T-cell responses necessary to combat and eliminate 

infectious agents 110–112. Exhausted CD8+ T-cells exhibit a loss of cytotoxic function 113 

and decreased mitogen-induced proliferation 114. But, importantly, virus-specific CD8+ T-

cell response can be restored, either through a period of rest from antigenic stimulation or 

through inhibition of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand 

(TRAIL) apoptotic pathway. Also, antiretroviral therapy helps restore virus-specific CD8+ T 

cells 115,116. Thus HAART in combination with strategies to reduce antigenic stimulation 

may help to reduce risk of AIDS-NHL. Indeed, association of EBV reactivation and T-cell 

exhaustion has been demonstrated in several diseases 98,117. Further studies are required to 

investigate if reactivation of EBV or KSHV is associated with a T-cell exhaustion profile 

(upregulation of checkpoint inhibitors such PD-1, LAG-3, Tim-3, and CTLA-4 on T-cells), 

and AIDS-NHL risk.

Our study has few limitations. One limitation is the possibility that assessment of antibodies 

to different pathogens in HIV-infected people could be complicated by HIV-associated 

premature exhaustion of B-cells leading to impaired antibody responses 118–121. Such 

impairment of serologic memory confers additional risk for HIV related opportunistic 

infections and mortality. Although premature exhaustion of immune cells can be reversed by 

antiretroviral therapy 115,116, a minority of cases and controls in out cohort received 

HAART. Another potential limitation is that our study consisted largely of white men who 

have sex with men, potentially limiting the generalizability of study findings. Also, 42/199 

(21%) of the AIDS-NHL cases in our cohort were pathologically classified as “NHL not 

otherwise specified (NOS)”, making it difficult to evaluate NHL subtype-specific 

associations with seropositivity to certain pathogens or their antigens.

To our knowledge, this is the first comprehensive examination of seropositivity to multiple 

pathogens, including 14 different viruses, three bacteria, and a protozoon, in an attempt to 

better define cumulative pathogen exposures as well as individual pathogen/antigen 

associations with AIDS-NHL risk. Sensitive serological assays for detection of antibodies to 

infections can be a powerful tool for identification of cancer biomarkers 122. In addition to 

the prior reports demonstrating that AIDS-NHL development is preceded by high serum 

levels of several inflammatory cytokines and chemokines indicative of B-cell 

hyperactivation 16,20,123, as well as microbial translocation 124, our results contribute data on 

association of well-known (KSHV and EBV) and potentially novel lymphomagenic agents 

(TSPyV) with AIDS-NHL risk. Therefore, a possible strategy to reduce underlying immune 

activation in HIV-infected persons as a strategy to reduce AIDS-NHL risk, may involve a 

multi-pronged approach including earlier access to HAART, use of anti-inflammatory agents 

to dampen immune activation, as well as treatment of co-infections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Selected characteristics of the 199 AIDS-NHL cases and 199 matched HIV-infected controls from the 

Multicenter AIDS Cohort Study

AIDS-NHL cases
(N = 199)

HIV-infected controls
(N = 199)

N (%) N (%)

Recruitment Cohort

1984–1985 168 (84) 168 (84)

1987–1991 24 (12) 24 (12)

2001+ 7 (4) 7 (4)

Race

White, non-Hispanic 161 (81) 159 (80)

Black, non-Hispanic 17 (8) 23 (11)

Hispanic 21 (11) 16 (8)

Asian or Pacific Islander 0 (0) 1 (1)

Age
1

< 30 28 (14) 31 (15)

30 – 39 83 (42) 93 (47)

40 – 49 70 (35) 61 (31)

≥ 50 18 (9) 14 (7)

CD4+ T-cells/mm3
1

< 200 44 (22) 40 (20)

200 – 399 63 (32) 57 (29)

≥400 92 (46) 102 (51)

Prior HAART exposure
1

No 188 (95) 188 (95)

Yes 11 (5) 11 (5)

Time from serum date until NHL diagnosis,
years (mean ± SD) 3.9 ± 1.6 N/A

NHL Site / ICD-O-3 code
2

Systemic / all beside 71.0–71.9 and 72.0–72.9 139 (70)

Central Nervous System / 71.0–71.9, 72.0–72.9 60 (30)

NHL Subtype (systemic only) / ICD-O-3 code
3

Diffuse large B-cell lymphoma / 9680.3, 9684.3 69 (50)

Burkitt Lymphoma / 9687.3 23 (16)

Lymphoplasmacytic lymphoma / 9671.3 1 (1)

Mature T-cell lymphoma / 9702.3 2 (1)

Primary effusion lymphoma / 9678.3 1 (1)
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AIDS-NHL cases
(N = 199)

HIV-infected controls
(N = 199)

Follicular lymphoma / 9691.3 1 (1)

NHL, NOS / 9590.3, 9591.3 42 (30)

Cancer diagnosis prior to NHL
4

NHL is first primary cancer 164 (82)

NHL is second primary cancer 35 (18)

Tumor EBV status

Negative 28 (14)

Positive 60 (30)

Unknown 88 (44)

Abbreviations: AIDS, Acquired Immunodeficiency Syndrome; NHL, non-Hodgkin lymphoma; SD, standard deviation; HAART, highly active 
antiretroviral therapy; EBV, Epstein-Barr virus

1
The reference date for these variables is the collection date of a blood sample used for testing in this study

2
ICD-O-3 topographical codes: http://codes.iarc.fr/topography

3
ICD-O-3 morphological codes: http://codes.iarc.fr/codegroup/2, here for systemic NHLs only

4
Kaposi sarcoma preceded AIDS-NHL in 32 out of the 35 cases where AIDS-NHL was a second primary cancer
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Table 2.

Association between pathogen burden and AIDS-NHL risk

AIDS-NHL
cases

HIV-infected
controls OR 95% CI

N (%) N (%)

Risk per seropositive antigen 199 (100) 199 (100) 1.01 0.91–1.12

Categories of seropositive pathogens

    ≤ 9 36 (18) 44 (22) 1

    10 – 18 163 (82) 155 (78) 1.35 0.78–2.32
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Table 3.

Associations between seropositivity for each of the 18 pathogens and subsequent AIDS-NHL risk in pre-

diagnostic sera from 199 AIDS-NHL cases and 199 HIV-infected matched controls from the Multicenter 

AIDS Cohort Study

AIDS-NHL
cases
N (%)

HIV-infected
controls
N (%)

OR 95% CI

Human papillomaviruses

   HPV16 L1 negative 158 (79) 165 (83) 1

   HPV16 L1 positive 41 (21) 34 (17) 1.33 0.75 – 2.37

Human polyomaviruses

   BKPyV VP1 negative 32 (16) 32 (16) 1

   BKPyV VP1 positive 167 (84) 167 (84) 1.10 0.61 – 2.01

   JCPyV VP1 negative 145 (73) 140 (70) 1

   JCPyV VP1 positive 54 (27) 59 (30) 0.85 0.52 – 1.38

   TSPyV VP1 negative 48 (24) 65 (33) 1

   TSPyV VP1 positive 151 (76) 134 (67) 1.62 1.02 – 2.57

   MCPyV VP1 negative 64 (32) 71 (36) 1

   MCPyV VP1 positive 135 (68) 128 (64) 1.20 0.76 – 1.90

Human hepatitis viruses

   HBV negative 48 (24) 44 (22) 1

   HBV positive 151 (76) 155 (78) 1.00 0.60 – 1.65

   HCV negative 174 (88) 181 (91) 1

   HCV positive 25 (12) 18 (9) 1.23 0.25 – 5.98

Human herpesviruses1

   HSV1 negative 47 (24) 53 (27) 1

   HSV1 positive 152 (76) 146 (63) 1.11 0.69 – 1.79

   HSV2 negative 64 (32) 60 (30) 1

   HSV2 positive 135 (68) 139 (70) 0.81 0.51 – 1.27

   EBV negative 0 (0) 1 (1) 1.0

   EBV positive 199 (100) 198 (99) NE

   HCMV negative 0 (0) 1 (1) 1.0

   HCMV positive 199 (100) 198 (99) NE

   HHV6 negative 96 (48) 80 (40) 1

   HHV6 positive 103 (52) 119 (60) 0.71 0.46 – 1.10

   HHV7 negative 52 (26) 44 (22) 1

   HHV7 positive 147 (74) 155 (78) 0.76 0.47 – 1.24

   KSHV negative 81 (41) 90 (45) 1

   KSHV positive 118 (59) 109 (55) 1.18 0.76 – 1.83

Bacterial infections

   H. pylori negative 165 (83) 166 (83) 1

   H. pylori positive 34 (17) 33 (17) 1.02 0.55 – 1.88

   C. trachomatis negative 26 (13) 31 (16) 1
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AIDS-NHL
cases
N (%)

HIV-infected
controls
N (%)

OR 95% CI

   C. trachomatis positive 173 (87) 168 (84) 1.18 0.63 – 2.18

   M. genitalium negative 113 (57) 105 (53) 1

   M. genitalium positive 86 (43) 94 (47) 0.80 0.52 – 1.22

Parasitic infections

   Toxoplasma gondii negative 182 (91) 185 (93) 1

   Toxoplasma gondii positive 17 (9) 14 (7) 1.22 0.55 – 2.72
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